

The Exploratory Media Lab
MARS Media Arts & Research Studies

netzspannung.org
Wissensraum für digitale Kunst und Kultur

PAAL, Stefan
KAMMÜLLER, Reiner
FREISLEBEN, Bernd

A Cross-Platform Application Environment
for Nomadic Desktop Computing

published on netzspannung.org:
http://netzspannung.org/about/mars/projects/pdf/awake-2004-7-en.pdf
14 March 2005

First published: Proc. of the 5th International Conference for Objects,
Components, Architectures, Services and Applications for a Networked
World (NODE 2004). Erfurt: Springer, 2004.

A Cross-Platform Application Environment
for Nomadic Desktop Computing

Stefan Paal1, Reiner Kammüller2, Bernd Freisleben3
1 Fraunhofer Institute for Media Communication

Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
stefan.paal@imk.fraunhofer.de

2 Department of Electrical Engineering and Computer Science, University of Siegen
Hölderlinstr. 3, D-57068 Siegen, Germany

kammueller@pd.et-inf.uni-siegen.de
3 Department of Mathematics and Computer Science, University of Marburg

Hans-Meerwein-Strasse, D-35032 Marburg, Germany
freisleb@informatik.uni-marburg.de

Abstract. The possibility to uniformly access the WWW using a standard web
browser has fostered the development of nomadic desktop computing, allowing
nomadic users to run their applications from nearly any location providing ac-
cess to the Internet. In this paper, we propose an approach to nomadic desktop
computing based on the idea of dynamically deploying and executing personal-
ized applications on the desktop system currently used by a nomadic user. We
present a cross-platform application environment that automatically adapts it-
self to the requirements and configuration of a nomadic desktop application and
enables the seamless execution and migration of applications across heteroge-
neous desktop computer systems. The implementation of our approach is out-
lined and its use in ongoing research projects is demonstrated.

1 Introduction

The major goal of the Internet was to link spatially distributed computing resources in
the real world into a virtual computing environment where their physical location be-
comes less important or even completely unknown to the user [1]. With the advent of
the WWW, information published on HTML pages by web servers got transparently
accessible from everywhere using an ordinary web browser. Subsequently, several
proposals have been made to establish the web browser as the universal user interface
for nomadic desktop computing [2]. Instead of deploying an application on each desk-
top system, it is centrally installed and executed on an application server [3]; a stan-
dard web browser on a desktop system is then used by the nomadic user to access the
application on the application server, as shown in Fig. 1.

However, an HTML interface provided by a web browser can not really substitute
the rich user interface of a native desktop application. Thus, several attempts have
been made to provide a comparable user interface by implementing the thin-client ap-
proach and running a desktop Java applet [4]. This approach requires less administra-
tion effort due to the centralized installation of an application, but it heavily relies on

the processing power of the application server and the availability of a permanent
network connection to access the remote application.

Fig. 1. A nomadic desktop computing scenario

In this paper, we propose a different approach based on the idea of so called no-
madic desktop applications. Instead of installing and executing applications on certain
application servers, they are dynamically deployed and executed on the desktop sys-
tem currently used by a nomadic user. In this scenario, a desktop computer system is
alternately shared among different and unknown users. Thus, a fundamental problem
is the dynamic and automatic adaptation of the current desktop computer to transpar-
ently provide a pervasive desktop environment to each user and application. Clearly,
in practice it is not possible to prepare and maintain a single installation or configure
all applications which might be used in advance. We address this basic problem by
presenting a cross-platform application environment. It automatically adapts itself
without user intervention to provide a suitable application environment for each de-
ployed application across heterogeneous desktop computer systems. In addition, it en-
ables the migration of application and user configurations among different hosts.

The paper is organized as follows. In section 2, we discuss the features and re-
quirements of nomadic desktop computing and present related work. Section 3 pre-
sents our approach towards a cross-platform application environment and illustrates
its realization in Java. The application of our approach is demonstrated in section 4.
Section 5 concludes the paper and outlines areas of future work.

2 Nomadic Desktop Computing

In the following, we highlight the goals of nomadic desktop computing and identify
the requirements to provide a suitable nomadic application environment. Then, we
discuss related work and summarize our findings.

2.1 Goals

There are several models and visions of nomadic computing [2, 5, 6, 7], and many of
them are mixed up with different variants of mobile computing, ubiquitous computing
and pervasive computing. While some approaches are focusing on integrating com-
puting systems into everyday scenarios and devices like car navigation systems or in-
venting new mobile devices like wearables, our focus is to particularly support no-
madic users employing different desktop computing devices [2]. The basic idea is to
enable people to use any desktop computer to run applications and to separate the
one-to-one relationship between the desktop computer and the nomadic user as well
between the desktop computer and the desktop application. Nomadic users can travel
around and employ various desktop computers to work with their desktop applica-
tions, hence creating a pervasive desktop environment. Consequently, instead of hav-
ing a desktop application installed on a single personal computer, the involved appli-
cation has to travel with the nomadic user and become itself a nomadic desktop
application which is dynamically deployed on unmanaged nodes, as shown in Fig. 2.

Fig. 2. Nomadic desktop computing

A crucial problem in this scenario is to provide the illusion of a pervasive desktop
environment that is independent of a specific host. This does not only include the
automatic deployment and composition of application binaries, but also the migration
of customized application configurations. In addition, the access to remote resources,
such as the server application in Hamburg in Fig. 2, should be transparently reconfig-
ured according to the current platform capabilities. The user should not be bothered
with manual application configuration tasks but in contrast the desktop computer
should adapt itself and provide a suitable application environment on the fly.

2.2 Requirements

The functional requirements of an application environment supporting nomadic desk-
top applications are as follows:

Runtime Environment
An application environment has to support nomadic desktop applications which may
migrate to another desktop computer when the user moves. In effect, the desktop
computer does not know in advance which application will be employed but it has to
adapt itself and to provide a suitable runtime environment according to the platform
capabilities and application requirements.

Self-Management
While a desktop computer in a local network environment is well-known and can be
easily managed, it is practically impossible to manage all possible desktop computers
in a heterogeneous Internet environment. As a result, a potential Internet desktop
computer has to self-manage the aspects of application deployment and composition
as well as dynamic hosting and configuration of nomadic desktop applications.

Cross-Personalization
While traveling around, nomadic users and desktop applications pass different desk-
top systems. An important requirement for creating a pervasive desktop environment
is the personal configuration and customization of the current desktop system [8].
With respect to current platform capabilities, each desktop system should offer a per-
sonalized application environment to the nomadic user and the desktop application.

Multi-Application Management
In order to share commonly required components and to enable the easy collaboration
and integration of multiple started desktop applications like in a personal desktop
computing system, a cross-platform application environment should offer facilities to
concurrently host and manage multiple applications in a shared or several separated
runtime environments.

Resource Sharing
If a nomadic user is moving to another desktop computer where some application
components have already been deployed by a former nomadic user, the application
environment should reuse these components and not download and maintain exclu-
sive copies for each application installation. Moreover, common configurations of the
currently involved desktop computing systems should be shared among applications.

2.3 Related Work

In the following, we examine various approaches proposed in the literature to support
the requirements of nomadic desktop computing.

Native Application Environments
A desktop computer is typically used exclusively by a single user. The installed oper-
ating system represents a native application environment bound to certain hardware.
It is usually managed by a single administrator who ensures that all resources (e.g. li-

braries) are installed and properly configured in advance. This pre-installation is usu-
ally perfectly tailored to the needs of a single user and does typically not allow hot
deployment of new applications. Instead, the administrator has to manually install and
configure each application. Moreover, different computer systems are used, and the
required application binaries as well as the capabilities of the installed operating sys-
tem vary from version to version. Therefore, native application environments basi-
cally do not support seamless migration of an application to another host, e.g. a Linux
binary can not be executed on a MS Windows system. Finally, native application en-
vironments are not expected to migrate application configurations across heterogene-
ous desktop systems, although there are approaches which synchronize user profiles
on a central server and retrieve them when the user logs in to another host, e.g. using
Microsoft ADS, Novell NDS or LDAP [9]. As a result, nomadic desktop applications
which rely on a native application environment and the related binary format can not
be easily deployed across different desktop computers.

Virtual Application Environments
A different approach is so called virtual application environment. Instead of tightly
coupling the application binaries with the operating system, they typically employ an
intermediate application format. While some approaches like Flash or Shockwave
[10] are typically tailored to be used as a plugin in a web browser, other approaches
like Perl or Python [11] do not really support desktop computing with a graphical user
interface. In contrast, Sun’s Java comes with a full-fledged Java Runtime Environ-
ment (JRE) which provides a uniform application system across heterogeneous plat-
forms. Actually, it is concurrently installed with a standard browser as a plugin and is
thus available on nearly every desktop system. The introduction of Java applets al-
lowed simple desktop applications to be deployed on desktop computer systems using
a web browser. However, an applet could not be executed offline and independent of
the browser. With the invention of Sun Java Web Start (JWS), the web browser was
only needed for requesting an application but then it could be used offline as well as
independent of the browser [12]. Furthermore, with Java Web Start, software de-
ployment was simplified by introducing additional features such as automatic caching
and updating of already downloaded components as well as sharing them across vari-
ous desktop applications. Finally, application development was made as simple as de-
veloping a local application. There was no need to employ particular programming
models as with Java applets. However, even though Java Web Start helped to seam-
lessly deploy Java applications across heterogeneous Internet nodes, it still lacks some
important features required for a nomadic application system. First of all, there is no
support for the migration of an application from one desktop system to another. In
contrast, an application is independently installed on each desktop system and there is
no synchronization with already existing configurations on another one. Moreover, it
is not able to directly communicate with JAR repositories. Instead, a Java Native
Launch Protocol (JNLP) configuration file must be downloaded and evaluated from a
web server which can not be personalized by the user.

Remote Application Environments
Other approaches avoid deploying desktop applications at all and rely on a remote
application environment. For instance, the project Cooltown is a Hewlett-Packard re-
search project which follows the smart space solution of web-based nomadic comput-
ing [1, 13]. It utilizes existing standard Internet technologies like a web browser,
HTTP, XML and URL. Thus, it avoids the inherent complications associated with
ubiquitous computing, such as programming language, operating system and hard-
ware dependencies. A similar approach called crossware was already proposed by
Netscape in the mid-nineties but never reached broad acceptance [14, 15]. Another
example is the network computer approach developed a few years ago mainly by Sun
and Oracle [4]. The crucial idea was to replace a desktop computer by a computer
system which basically consists of a screen, a keyboard and some memory. Instead of
deploying and installing applications on each desktop computer, everything including
the configurations and user profiles are managed on an application server which also
provides processing power to execute the application. Similar to the XWindows sys-
tem, the network computer is used to connect to the application server and to display
the related user interface, following a thin-client approach. As a result, the user can
access every application and all of her or his files from each connected network com-
puter using a uniform desktop interface. In addition, the administration of the system
is limited to a few application servers. Nevertheless, the original network computer
approach did never receive widespread acceptance, possibly because network com-
puters could not be used offline but only online. A variant is the use of a native oper-
ating system to provide a graphical user interface which is connected to an application
running on a remote application server as in [16]. Instead of executing the application
on the desktop, only the required display data is transferred from and to the applica-
tion server. However, this also inherits the online problem and it is limited to a certain
operating system supporting the user interface.

2.4 Summary

The presented approaches basically differ in their support for heterogeneous desktop
systems. While native application environments are inherently bound to specific oper-
ating systems, virtual and remote application environments are actually independent
of the underlying platform capabilities. Although MS .NET actually represents a vir-
tual application environment, it is still only available as an attachment to MS Win-
dows and can not be employed on different operating systems [17].

Furthermore, there is also a difference in the customization of the application envi-
ronment according to personalized application configurations. Approaches based on
Java Web Start do not support the modification of a given application configuration
within a JNLP file. In contrast, native application environments may be independently
customized but the resulting configuration is not always portable to another employed
desktop system. Consequently, the personalized configuration options left on the for-
merly employed desktop system are lost. Concerning the sharing of resources such as
downloaded components, there is also the problem that application systems typically
provide a separated runtime environment to each deployed application. For instance, a
Java application hosted by Java Web Start is usually isolated from other concurrently

hosted applications and is not able to share common resources, e.g. already
downloaded application components.

In summary, there are various approaches towards the distributed deployment of
desktop applications. While they have proven their suitability in specific application
scenarios, they typically introduce certain application models which are not suitable
for all scenarios (such as Java applets and offline operation) or rely on fixed configu-
rations (such as Java Web Start and its JNLP files). As a result, we think that there is
still the need for a cross-platform application environment which is suitable to cus-
tomize itself in a self-managed way according to the needs of the nomadic desktop
application and the personalization of the nomadic user.

3 A Cross-Platform Application Environment

In this section, we present our approach towards a cross-platform application envi-
ronment. We discuss its basic concepts and features concerning nomadic desktop ap-
plications. Finally, we illustrate its implementation and present an example of its use.

3.1 Conceptual Approach

A basic problem of nomadic desktop computing is the provision of a suitable applica-
tion environment that is uniformly customized across different desktop systems fol-
lowing application-specific configuration requests and user-specific personalization
options. We address this problem by separating platform, application and user related
concerns and introduce various configuration options, as shown in Fig. 3.

Fig. 3. Cross-Platform Application Environment

The basic idea of our approach is to provide a pervasive application environment
on top of a specific application environment which is customized by the application
configuration passed by the nomadic user. In detail, particular runtime profiles are re-
sponsible for defining the hosting capabilities of the platform and are maintained by
the platform administrator. The application repository is used by application devel-
oper to deploy application components and to describe the dependencies on other
components. The profile repository contains the personalization for each nomadic
user and nomadic application. In contrast to existing approaches, the cross-platform
application environment does neither impose a single application model nor how the
runtime environments are prepared or the required application components are de-
ployed. It can be easily extended with additional runtime variants like Java or Perl
whereby each extension is responsible for interpreting the passed application configu-
ration and to prepare a suitable application environment.

3.2 Realization

Our current prototype of the proposed cross-platform application environment is im-
plemented in Java and therefore greatly benefits from the uniform runtime environ-
ment provided by the Java Virtual Machine across heterogeneous operating systems
and platforms. In addition, we have virtualized further aspects of nomadic desktop
computing, such as the deployment and composition of Java applications. For in-
stance, the composition of multiple Java applications within a single JVM is decoup-
led from the actual deployment scenario found on a certain platform, as shown in Fig.
4. Commonly used resources and classes can be shared and do not have to be loaded
in separate JVM. Moreover, the collaboration of concurrently used applications is fa-
cilitated, e.g. exchanging data using object references.

Fig. 4. Multi-application hosting within a single JVM

Class collections [18] define the location as well as the content of a class reposi-
tory. In turn, class space [19, 20] configurations are used to organize which classes
may be loaded by the JVM, which are shared with and which are shielded from other

concurrently loaded applications. Further, starting a single Java application by passing
the class containing the static method main on the command line is not possible when
multiple applications are hosted within the same JVM. Thus, we determine the main
method using Java Reflection [21] and finally call it after having initialized the related
application environment, as shown in fig. 5.

app = createClassSpace("application");
Class mainClass = app.loadClass(szMain);
String[] args = new String[mainArgs.size()];
mainArgs.toArray(args);
Object params[]={ args }; Class t[]={ String[].class };
Method meth = mainClass.getDeclaredMethod("main", t);
meth.invoke(null, params);

Fig. 5. Determining the main method using Java reflection

In the first line, the class space is created and configured to host the application.
After that, the application class containing main is loaded and the subsequent call
with invoke is dynamically assembled and performed using Java reflection. Further
details about class collections and class spaces are described in [18, 19, 20, 22].

Apart from the composition and hosting of multiple Java application, there is a re-
lated problem concerning the control of each application and its threads within a sin-
gle JVM. The native JRE offers only little support for managing and signaling Java
threads. For instance, there is no standard way to control a foreign thread or to process
received signals in a pre-defined way, e.g. registering signal handlers. This means that
for a multi-application environment there is no way to implement a common task
manager to uniformly control various applications, threads and processes. In turn, an
application can not be informed when a certain event is issued, e.g. when the applica-
tion environment is shut down. As a solution, we developed a managed thread model
which transparently wraps the original Java threads and provides synchronous and
asynchronous access to each created thread within the JVM, as shown in Fig. 6.

Fig. 6. Managed thread model and signal handling in Java

The implementation is mainly based on the Java feature of thread group inheri-
tance which automatically associates each newly created thread with the current

thread group [23]. At the startup of the application environment, we create a particular
managed thread group which is then able to address all later created threads. This way
we can distinguish legacy and managed threads and can trigger callbacks that are used
by the foreign thread to process asynchronous thread signals and synchronous thread
control requests. In contrast to the native thread model where a thread is not longer al-
lowed to call suspend, resume or stop, the managed thread model offers an alternative
way to implement thread control. Of course, this assumes that the target thread is not
refusing to be controlled but is regularly calling the signal handler method.

3.3 Use

A basic problem of a cross-platform application environment is its initial deployment
on separately managed and remotely located computing systems. To this end, we dis-
tribute a Java-based management component with the Java Network Launch Protocol
(JNLP). It is then used to load and start the requested applications as described in
[20]. Thus, using the JNLP, the presented approach can be basically employed on any
target system where a native Java Runtime Environment has been previously in-
stalled, e.g. as part of an Internet browser installation. If the nomadic user wants to
move to another desktop computing system, he or she closes all applications and the
application configuration is written back to the profile repository. He or she then
moves and starts the cross-platform application environment on the next computer,
the application profiles are retrieved from the profile repository and the user is able to
start his or her applications again with personalized settings. In the following, we de-
scribe step-by-step how the actual cross-platform application environment is config-
ured.

Step 1: Runtime Profiles (Platform Administrator)
Apart from launching Java applications within the same JVM as described in [20], we
now use runtime profiles to specify additional runtime variants, as shown in fig. 7.

<application-runtime id=”{8A750732}”>
 <property name=”runtime” value=”native-java” />
 <property name=”version” value=”1.4.2” />
</application-runtime>

Fig. 7. Runtime profile

The runtime profile is used to specify a common configuration setup which can be
referenced by the application deployment, as depicted below. Its major objective is to
configure runtime profiles depending on the resources of the underlying platform in-
stead of the yet unknown applications. In the example above, we define a runtime
profile for launching an application in a separate JVM using Java version 1.4.2.

Step 2: Collection Deployment (Component Developer)
We start with the deployment of a Java class collection. The developer has to create a
class collection configuration with metadata about the collection, such as version
property and where the Java classes can be actually downloaded. In addition, the re-

quired classes can be further selected by specifying regular expressions, as shown in
Fig. 8. Only matching classes are loaded from the specified repositories.

<collection id=”{553C6E73}”>
 <property name=”version” value=”1.0” />
 <repository url=”http://crossware.org/clock.jar” />
 <resource name=”org/crossware/clock/.*”/>
 </repository>
</collection>

Fig. 8. Class deployment using class collections

Step 3: Application Deployment (Application Deployer)
Next, the application deployer has to specify the required runtime environment in a
separate application deployment configuration, as shown in Fig. 9. Along with that,
she or he defines the required collections defined in the second step and which ones
are shared or shielded using a class space configuration. The purpose of this separa-
tion is to enable the platform to look for alternative compatible collections in case the
exact collection is not available on the current platform. In addition, the main class
where the application execution starts has to be specified.

<application-environment id=”{DC488997}”>
 <runtime=”native-java” />
 <main-class=”org.crossware.clock.Main” />
 <classspace name=”shared”>
 <collection id=”{553C6E73}” />
 <property name=”version” value=”1.0”/>
 </collection> </classspace>
 <classspace name=”shielded”>
 <collection id=”{3283A542}”>
 <property name=”version” value=”2.2”/>
 </collection> </classspace>
</application-environment>

Fig. 9. Application deployment

Step 4: Application Configuration (Application Installer)
Another configuration is dynamically passed to a cross-platform application system
when an application is to be deployed, e.g. a nomadic application migrating from one
host to another. The application configuration shown in Fig. 10 contains a unique ref-
erence to the deployment description as well as a reference to the application profile.
Both are evaluated by the cross-platform application environment and used to provide
an appropriately configured runtime environment.

<application-configuration id=”{5C015A86}”>
 <deployment=”{DC488997}”/> <profile=”{DB92B18C}”/>
</application-configuration>

Fig. 10. Application configuration

We want to point out that the application description does not contain any refer-
ence to the actual implementation, e.g. package name, JAR file location or name of

the main class to start the application. Instead these settings are dynamically deter-
mined by the application environment evaluating the application deployment, collec-
tion deployment and runtime profile.

Step 5: Application Profile (Application User)
Finally, the application profile used for the personalization of an application installa-
tion is retrieved by the application system before the application is started. As shown
in Fig. 11, the profile contains an individual display name and icon as well as certain
parameters passed to the application.

<application-profile id=”{DB92B18C}”>
 <name=”Clock” />
 <icon=”class://org/crossware/clock/clock.png” />
 <args name=”format” value=”digital” />
</application-profile>

Fig. 11. Application profile

This example represents only a simple view of the system. Of course, real collec-
tion configurations and application profiles are more complex than the mentioned
ones. They are also usually not edited manually but with related tools.

3.4 Discussion

In this section, we highlight the basic features of the proposed cross-platform applica-
tion environment with respect to nomadic desktop computing.

Separation of Concerns
We have identified various tasks for employing an application, such as deployment,
composition, configuration, personalization and hosting of an application. Conse-
quently, we have separated these concerns and provide options to customize each in-
dependently. In detail, the desktop computer system can be configured regardless of
the nomadic desktop application. In turn, the application developer can also imple-
ment his or her application without actually knowing where it will be employed.

Extensible Runtime Support
Our cross-platform application environment is not limited to employ a certain runtime
environment but is supposed to prepare and control arbitrary runtime environments as
long as there is a suitable runtime profile available on the current platform. For this
purpose, it can be extended with additional runtime configurator plugins. In effect, a
particular application environment may be prepared and started in a separate process
and window, e.g. executing a native C++ command line tool.

Self-Managed Customization
The required customization and provision of a suitable runtime environment is per-
formed without intervention of the nomadic user. This is a particular feature concern-

ing a pervasive application environment that travels with a nomadic user and does not
force him or her to manually configure and synchronize different application installa-
tions on each involved platform. Moreover, due to the diversity of platform configura-
tion and capabilities, it would be actually not possible for the user to perform this task
in heterogeneous environments such as the Internet.

Personalized Application Profiles
A basic objective of a pervasive application environment is cross-platform personal-
ization. To this end, we have introduced a user-specific application profile which is
used to maintain the application personalization independent of a particular desktop
system and is synchronized with locally modified application profiles. Apart from
personalizing a single application, it is also used to personalize selected settings spe-
cific to a certain host like the address of the proxy server.

Multi-Application Management
The concurrent hosting of various applications is a typical feature of desktop comput-
ing, though it is often a complex task. Especially for Java applications we have intro-
duced so called class spaces that allow organizing the classes of more than one Java
application within the same JVM. Moreover, we have also invented a new thread con-
trol model that allows uniformly controlling and signaling foreign Java threads of
concurrently loaded Java applications.

Resource Sharing
Commonly used resources like an XML parser can be shared among concurrently
hosted applications in a multi-application environment. Apart from eventually
downloading required components and the preparation of a suitable runtime environ-
ment, this does also not cause further performance overhead with respect to the exe-
cution of an application in a single platform environment.

4 Application of the Approach

In the following, we present a so called Internet Application Workbench which has
been built as part of our cross-platform application environment to provide a graphi-
cal user interface. Currently, we use it in our project netzspannung.org [24] as an ad-
vanced workspace interface to access its document pools and start certain applica-
tions, as shown in Fig. 12.

The basic purpose of the workbench is to provide a uniform graphical interface to
access nomadic desktop applications from arbitrary Internet hosts. For this purpose,
the workbench is implemented in Java and initially deployed using Sun Java Web
Start. It comes with a basic configuration for a Java application environment, e.g. the
location of a Java application repository, as described in [18]. Thus, the user can im-
mediately start to request and configure Java applications and run them within the
workbench. In detail, the workbench can host multiple Java applications within the
same JVM, which is realized by self-organizing Java class loaders using class spaces,

as described in [19]. Concerning the way how users work with multiple applications
within a native single desktop system, our Internet application workbench represents a
cross-platform desktop system which is dynamically adapted to the current platform
without bothering the user with manual configuration or installation tasks. In fact, the
user is not aware of this adaptation and always gets the illusion of a pervasive applica-
tion environment when moving across various desktop computers.

Fig. 12. Internet Application Workbench

In addition, the user can further configure the application environment according to
the platform capabilities as well as specific program settings like the path to a Perl in-
terpreter. The workbench can then be used to some degree as a program launcher for
running legacy applications in a separated process. It downloads the suitable applica-
tion binary from a remote application repository, passes the appropriate program pa-
rameters to the operating system and controls the resulting process. However, the
automatic migration of customized application configurations is typically not possible
due to application specific approaches to store the configuration data.

5 Conclusions

In this paper, we have discussed the goals and requirements for nomadic desktop
computing. Since existing approaches are either limited to fixed application scenarios,
do not support the seamless migration of a desktop application and its configuration
from one desktop system to another, or are not capable to synchronize user and multi-
ple application profiles across various Internet hosts, we have presented our develop-
ment of a cross-platform application environment that tackles these problems by sepa-

rating the concerns of application deployment and composition, runtime
customization and personalization by introducing various configuration files such as
application descriptions, platform-specific runtime profiles and personalized profiles.
Its implementation in Java, utilizing Java Web Start for the initial deployment on a
new desktop computer system, was described. Finally, we have introduced a managed
thread model that allows to uniformly controlling and signaling threads of multiple
loaded Java applications. Our approach has been used to create an Internet application
workbench that provides a uniform graphical interface across various Internet hosts.
In effect, nomadic desktop users get the illusion of a pervasive application environ-
ment that travels with them and presents their personalized applications on different
desktop computers in a uniform way.

There are several areas for future work. For example, the development of the cross-
platform application environment is still going on. A major drawback of the current
implementation is the lack of security features and protection against malicious appli-
cations. This problem could be solved by introducing cryptographic keys to protect
downloaded and cached application components as well as application profiles. An-
other ongoing development is directed towards recommendation of application pro-
files. Currently, we investigate a recommender solution that evaluates existing pro-
files of other users which have already employed the same application and assists the
user in creating the initial personalization. Finally, we use the current implementation
only as part of our own research projects. After the first release, we want to test and
evaluate it in further application scenarios, e.g. deploying the Internet Application
Workbench as an advanced pervasive interface to netzspannung.org and its knowl-
edge discovery tools [26].

Acknowledgements

The presented approach has been applied in the ongoing research projects CAT [25]
and AWAKE [26] which are financially supported by the German Ministry of Educa-
tion and Research (BMBF). The projects are conducted by the research group MARS
of the Fraunhofer Institute for Media Communication, Sankt Augustin in cooperation
with the University of Siegen and the University of Marburg, Germany. Special
thanks go to Monika Fleischmann, Wolfgang Strauss, Jasminko Novak and Daniel
Pfuhl.

References

1. Kindberg, T., Barton, J. A Web-Based Nomadic Computing System. Computer Networks.
Vol. 35, Nr. 4. Elsevier 2001. pp. 443-456.

2. Amor, D. Internet Future Strategies: How Pervasive Computing Services Will Change the
World. Prentice Hall 2001.

3. Zhu, J., Törö, M., Leung, V.C.M., Vuong, S. Supporting Universal Personal Computing on
Internet with Java and CORBA. Concurrency: Practice and Experience, Vol. 10, Nr. 11-13.
John Wiley & Sons 1998. pp. 1007-1013.

4. Gentner, D., Ludolph, F., Ryan, C. Designing HotJava Views. JavaSoft 1997.
http://java.sun.com/products/hotjavaviews/hjv.white.html

5. Kleinrock, L. Nomadic Computing and Smart Spaces. IEEE Internet Computing. Vol. 4, Nr.
1. IEEE 2000. pp. 52-53.

6. Kleinrock, L. Breaking Loose. Communications of the ACM. Vol. 44, Nr. 9. ACM 2001.
pp. 41-45.

7. Lyytinen, K., Yoo, Y. The Next Wave of Nomadic Computing. Information System
Research. Vol. 13, Nr. 4. Informs 2002. pp. 377-388.

8. Wood, K. R., Richardson, T., Bennett, F., Harter, A., Hopper, A. Global Teleporting with
Java: Toward Ubiquitous Personalized Computing. IEEE Computer. Vol. 30, Nr. 2. IEEE
1997. pp. 53-59.

9. Sheresh, D., Sheresh, B. Understanding Directory Services. Macmillan Computer Pub 1999.
10. Kerman, P. Macromedia Flash MX 2004 for Rich Internet Applications. New Riders

Publishing 2003.
11. Wall, L., Christiansen, T., Orwant, J. Programming Perl. O’Reilly 2000.
12. Srinivas, R. N. Java Web Start to the Rescue. JavaWorld. IDG 2001. Nr. 7.

http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart_p.html
13. Cooltown. HP Research Labs 2004. http://www.cooltown.com/cooltown/index.asp
14. Cusumano, M. A., Yoffie, D. B. What Netscape learned from Cross-Platform Software

Development. Communications of the ACM. Vol. 42, Nr. 10. pp. 72-78. ACM 1999.
15.Andreessen, M. Building Crossware. Netscape Techvision 1997.

http://wp.netscape.com/columns/techvision/crossware.html
16.Extent Solutions. http://www.exent.com/solutions/products.asp.
17. Meyer, B. .NET is coming. IEEE Computer. Vol. 34, Nr. 8. IEEE 2001. pp. 92-97.
18. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.

Proc. of the 2003 Int. Conf. on Objects, Components, Architectures, Services, and
Applications for a NetworkedWorld. Erfurt, Germany., LNCS 2591, Springer-Verlag, 2003.
pp. 135-151.

19. Paal, S., Kammüller, R., Freisleben, B. Java Class Separation for Multi-Application
Hosting. In Proc. of the 3rd Conference on Internet Computing (IC 2002). Las Vegas, USA.
CSREA Press, 2002. pp. 259-266.

20. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and
Hosting of Distributed Java Applications. Proc. of the 4th Int. Symposium on Distributed
Objects and Applications (DOA 2002). Irvine, USA, LNCS 2519, Springer-Verlag, 2002.
pp. 845-865.

21. Richmond, M., Noble, J. Reflections on Remote Reflection. Proc. of the 24th Australasian
Computer Science Conference (ACSC 2001). IEEE 2001. pp. 163-170.

22. Paal, S., Kammüller, R., Freisleben, B. Separating the Concerns of Distributed Deployment
and Dynamic Composition in Internet Application Systems. Proc. of the 5th Int. Symposium
on Distributed Objects and Applications (DOA 2003). Catania, Italy., LNCS 2888,
Springer-Verlag, pp. 1292-1311.

23. Venners, B. Inside The Java 2 Virtual Machine. McGraw-Hill. 1999.
24. netzspannung.org, Communication Platform for Digital Art and Media Culture.

http://netzspannung.org
25. Fleischmann, M., Strauss, W., Novak, J., Paal, S., Müller, B., Blome, G., Peranovic, P.,

Seibert, C., Schneider, M. netzspannung.org - An Internet Media Lab for Knowledge
Discovery in Mixed Realities. In Proc. of 1st Conference on Artistic, Cultural and Scientific
Aspects of Experimental Media Spaces (CAST01). St. Augustin, Germany. pp. 121-129.
Fraunhofer 2001.

26. AWAKE - Networked Awareness for Knowledge Discovery. Fraunhofer Institute for Media
Communication. St. Augustin, Germany. 2003. http://awake.imk.fraunhofer.de

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

