Senspectra is a computationally augmented physical modeling toolkit designed for sensing and visualization of structural strain. The system functions as a distributed sensor network consisting of nodes, embedded with computational capabilities and a full spectrum LED, which communicate to neighbor nodes to determine a network topology through a system of flexible joints. Each joint, while serving as a data and power bus between nodes, also integrates an omnidirectional bend sensing mechanism, which uses a simple optical occlusion technique to sense and communicate mechanical strain between neighboring nodes. Using Senspectra, a user incrementally assembles and refines a physical 3D model of discrete elements with a real-time visualization of structural strain.
While the Senspectra infrastructure provides a flexible modular sensor network platform, its primary application derives from the need to couple physical modeling techniques utilized in the architecture and industrial design disciplines with systems for structural engineering analysis, offering an intuitive approach for physical real-time finite element analysis. Utilizing direct manipulation augmented with visual feedback, the system gives users valuable insights on the global behavior of a constructed system defined as a network of discrete elements.
(Source: http://tangible.media.mit.edu/projects/senspectra/)